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Stacking entropy of hard-sphere crystals

Siun-Chuon Mau and David A. Huse
Department of Physics, Joseph Henry Laboratories, Jadwin Hall, Princeton University, Princeton, New Jersey 08544

~Received 27 October 1998!

Classical hard spheres crystallize at equilibrium at high enough density. Crystals made up of stackings of
two-dimensional hexagonal close-packed layers~e.g., fcc, hcp, etc.! differ in entropy by only about 1023kB per
sphere~all configurations are degenerate in energy!. To readily resolve and study these small entropy differ-
ences, we have implemented two different multicanonical Monte Carlo algorithms that allow direct equilibra-
tion between crystals with different stacking sequences. Recent work had demonstrated that the fcc stacking
has higher entropy than the hcp stacking. We have studied other stackings to demonstrate that the fcc stacking
does indeed have the highest entropy ofall possible stackings. The entropic interactions we could detect
involve three, four, and~although with less statistical certainty! five consecutive layers of spheres. These
interlayer entropic interactions fall off in strength with increasing distance, as expected; this falloff appears to
be much slower near the melting density than at the maximum~close-packing! density. At maximum density
the entropy difference between fcc and hcp stackings is 0.001 1560.000 04kB per sphere, which is roughly
30% higher than the same quantity measured near the melting transition.@S1063-651X~99!06504-6#

PACS number~s!: 82.70.Dd, 61.50.2f, 81.05.Rm, 02.70.Lq
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I. INTRODUCTION

The question of which crystalline stacking of hard sphe
near close packing has the lowest free energy is a long st
ing one. The interest is partly due to the extreme anhar
nicity of hard-core interactions and partly due to the fcc-h
phase transition in solid helium@1#. This problem is difficult
both experimentally and theoretically. Experimentally, cla
sical hard spheres are approximated by spherical collo
particles with interactions whose ranges are very short c
pared to their radius. Deviations from ideal hard spheres
due to polydispersity of the spheres, and due to interacti
The van der Waals interaction can be reduced by match
the dielectric coefficients of the particles and the solv
@3,4#. Since, for ideal hard spheres, the free energy diff
ences between the different stackings are very small, as
will see, one would expect the equilibration time to be ve
long. Most studies have seen a random stacking patt
However, some experiments have reported that the obse
random stacking patterns in slowly grown or well-annea
colloidal crystals are biassed more towards fcc rather t
hcp stacking@2#.

The free energy difference between different class
hard-sphere crystals at fixed volume is only due to the
tropy difference, since the energy is the same for all allow
configurations. The numerical work, before the present
per, had only looked at the hcp and fcc stackings. The
studies calculated pressure using molecular dynamics s
lations @5# and then obtained entropies by integrating t
pressure vs. volume along reversible paths from states
known entropy@6–9#. These studies were not able to dete
the entropy difference between fcc and hcp crystals. La
Frenkel and Ladd@10# instead integrated along a path co
necting the hard-sphere model to Einstein crystals of
same lattice structure, by adding to the model ideal spri
tethering each sphere to its lattice site. In this approach t
integrate the derivative of free energy with respect to
spring constant. They came up with the bounds on the
PRE 591063-651X/99/59~4!/4396~6!/$15.00
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tropy difference per sphere:20.001,Ds* ,0.002 in units
of kB , whereDs* [sfcc2shcp.

Recently, Bolhuis, Frenkel and the present authors@11#
used both a new implementation of the multicanoni
Monte Carlo ~MCMC! method @12,13#, and the Einstein
crystal method to reduce the statistical errors down to
1024kB per sphere level. This allowed us to accurately
solve the entropy difference of roughly 1023kB per sphere
between fcc and hcp crystals, with the fcc crystal having
higher entropy@11#. These quantitatively corrected the rece
pressure-integration study of Woodcock@14#, confirming his
result that the fcc crystal has higher entropy. More recen
Bruce, Wilding, and Ackland have found a superior imp
mentation of the multicanonical method for this proble
reducing the statistical error inDs* down to near the 1025kB
level @15#. The various results forDs* are summarized in
Table I. It is clear from the table that MCMC is able t
obtain substantially smaller statistical errors for this proble
compared to the more conventional integration metho
Speedy’s recent pressure-integration study within the crys
line phase@16# obtained thechangeof roughly 331024kB in
Ds* between the melting and close-packed densities, con
tent with our higher-precision results~Speedy’s absolute
measurement ofDs* had too large statistical errors to b
significant@16#!.

The reason why integration methods were used initia
was that it did not appear possible for the hard-sphere sys
to equilibrate between the fcc and hcp crystal structures,
to the very large, or even infinite, free energy barrier se
rating them. This was certainly true for standard molecu
dynamics or Monte Carlo methods. However, the MCM
method, the implementations of which we will summari
below, is designed precisely to eliminate such large free
ergy barriers and allow equilibration between very differe
states. This permits a direct measurement of the relative
tropies of the two states simply by comparing the probab
ties of their occurrences in a single simulation.

Since only the hcp and fcc crystals had been examine
4396 ©1999 The American Physical Society
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TABLE I. Recent results of fcc-hcp simulations for various densities~scaled by the close-packed densi
rcp).N is the number of spheres in the samples simulated. The entropy difference per sphere isDs* , with the
statistical errors in parentheses.~fcc has higher entropy.! Please note that the errors are particularly small
the overlap implementation of MCMC developed by Bruce, Wilding, and Ackland.

r/rcp N 105Ds* /kB Method Ref.

0.736 12 000 230~100! pressure integration @14#

0.736 12 096 87~20! Einstein crystal @11#

0.7778 5832 86~3! MCMC, overlap implementation @15#

1.00 1000 113~4! MCMC, overlap implementation present
1.00 512 110~20! MCMC, shear implementation present
0.731 512 85~10! MCMC, shear implementation present
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previous work, we have also looked at other stackings
hexagonally close-packed planes of spheres to make ce
that neglecting the other possible stackings was reason
The entropy differences between the stackings can be
scribed as due to interactions between layers. We have
able to detect the entropic interaction between a given la
and its nearby layers that are two, three, and possibly e
four layers away. These interactions are all of the sign t
favors the fcc stacking, so we confirm, as is no surprise,
the fcc stacking has higher entropy thanall other stackings;
it is not just higher than hcp. At the maximum packing de
sity, we find that the interaction with the third-neighbor lay
is roughly an order of magnitude smaller than that with
second-neighbor layer, as seems quite reasonable. For l
density, near the melting transition, the falloff of these e
tropic interactions with distance appears to be much slow
presumably reflecting the larger fluctuations of the individ
sphere positions.

For any given stacking, the entropy varies as a function
any homogeneous lattice deformation atconstantvolume
fraction. For the fcc stacking, the undeformed lattice has
bic symmetry, so must by symmetry be a stationary poin
the entropy vs deformation, and it is the maximum. For
other stackings, there is no such symmetry, and the m
mum entropy may be obtained for a deformation where
expansion of the lattice away from close packing is not i
tropic. We have looked for this possible effect in the h
stacking by measuring the entropy vs the uniaxial lattice
formation ~the c/a ratio!. If there is an anisotropy, we wer
unable to detect it. If there is an entropy difference betw
the highest entropy state and the isotropically expanded s
for the hcp stacking, this difference is less than 1025kB per
sphere, so it is well below the statistical errors in our co
parisons to the other stackings.

Another issue that arises in simulating hard-sphere c
tals is whether collisions between spheres that are not ne
neighbors can be neglected. It is certainly more conven
to make the approximation of including the hard-sphere
teraction only between nearest neighbors. Of course this
proximation is terrible in the liquid phase, but we have fou
that it is actually quite good in the solid phase even at
melting density. There we detected no difference inDs*
between the model where only nearest-neighbor sphere
teract and the model where second neighbors also inte
indicating that the difference is also smaller than our sta
tical errors when comparing the entropies of different sta
ings. It is usually not clear in the literature whether or n
f
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further neighbor interactions have been taken into acco
This result of ours shows that it does not matter within t
solid phase at the presently available resolution of the
tropy.

II. MODEL

The model we study is hard spheres: classical mono
perse spheres that are forbidden to overlap. All permit
configurations~with no overlaps between spheres! have the
same energy, which we may set as zero energy. At h
enough density this system crystallizes at equilibrium, an
is this crystalline equilibrium phase that we study here. So
of our results are for the maximum possible, or close-pac
density, which means the system is being treated pertu
tively to lowest order in the difference between the dens
and the close-packed density. In this limit the system
equivalent to a simpler system of aligned, hard dodecahe
@9#, and the displacements of the spheres from their id
lattice positions are infinitesimal compared to a sphere’s
dius. We simulate this limit directly in terms of the sphere
displacements. The system’s available phase space van
in this close-packing limit. Nevertheless, thedifferencesin
entropy between different stackings have finite, nonzero v
ues in this limit.

We consider close-packed crystal structures that con
of planes of hexagonally close-packed~in two dimensions!
spheres stacked up in the vertical direction. As is standar
discussing close-packed crystals, the stacking sequence
be denoted by a sequence of the lettersA, B, and C, with
nearest-neighbor layers in the sequence always having
ferent letters. Any global permutation on the letters in t
sequence simply represents a rotation, reflection or tran
tion of the structure, so will not change the entrop
•••ABCABCA••• is a sequence that represents the
stacking, while•••ABABABA••• represents the hcp stack
ing. To fully remove the degeneracy associated with the p
mutations, we may assign a Ising-like ‘‘spin’’s i to each
layer i based on the local stacking sequence of that layer
its nearest-neighbor layers immediately above and below
If that local stacking matches the fcc pattern~i.e., BAC or
any sequence of threedifferent letters! then s i511, while
the spin iss i521 if it instead matches the hcp pattern~i.e.,
ABA, ACA, BAB, BCB,CAC, or CBC). For example, the
middle five layers of the stacking sequenceABCACBC is
represented as11212 in terms of the spins. A given
stacking sequence ofs ’s ~the spins! is equivalent to any of
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six different sequences of the letters, and these six seque
of letters are all equivalent to one another under the glo
permutations of the labelsA, B, and C. The stackings we
study are periodic repetitions of a given spin sequence.
example, ‘‘12 ’’ represents the repeated spin sequen
•••1212121•••. One realization in terms of the let
ters is•••ABACABACA•••; note that the repeat length o
the letter sequence~four in this case! is generally longer than
that of the spin sequence~two in this case! . We denote the
entropy per sphere of this particular stacking ass12 .

The entropy of a given stacking is a function of the sta
ing sequence, which is described by the spinss i . It is rea-
sonable to expect that the shortest-range entropic interac
are the largest, so that the total entropy may be expande

S5Ans01Ah(
i 51

n

s i1AJ(
i 51

n

s is i 111AJ8(
i 51

n

s is i 12

1Ah8(
i 51

n

s is i 11s i 121•••, ~1!

for a stack ofn layers containingA spheres per layer. We
have periodic boundary conditions so thatsn115s1 , etc.
The bulk of the entropy is independent of the stacking
quence and given bys0 per sphere;s0 is strongly density
dependent. The shortest-range entropic interaction ish,
which involves the sequence over three consecutive laye
spheres; this is the shortest sequence that can have di
stackings. This term is the magnetic field in the correspo
ing one-dimensional Ising model. The next term is the int
actionJ between adjacent spins, and arises from the entro
interactions among four consecutive layers of spheres
are not already captured by the first termh. We find, as is
reasonable, thatJ,h. The next longer-range interactions (h8
and J8) that involve five consecutive layers are also d
played above; only in one case (h8 for density near melting!
could we detect these interactions in our simulations a
level that may be statistically significant.

The intuition behind this model is that the entropy of
sphere is mostly determined by how it is caged by its nea
neighbors and to a progressively lesser extent by the fur
neighbors. The interaction parameters do depend on the
sity. We find that, in units of 1025kB per sphere, the entropi
interactions that we could detect change from (h,J)
>(55,6) at the highest density~close packing! to (h,J,h8)
>(37,18,9) at the lowest density that the equilibrium crys
can have before it melts~at roughly 74% of the close-packe
density!. All detected interactions are of the sign such th
the fcc stacking has the largest entropy.

III. MULTICANONICAL MONTE CARLO METHOD

To make direct comparisons of the entropies of ha
sphere crystals with different stacking sequences, we wan
algorithm that will produce direct equilibration between t
two sequences. Then the entropy difference is simply
logarithm of the ratio of the equilibrium probabilities of th
system exhibiting the two sequences in question. Of cou
near close packing the hard spheres in a physically real
molecular dynamics or Monte Carlo simulation are stron
trapped by their neighbors, so the stacking pattern will
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al

or
e

-

ns
as

-

of
nct
-
-
ic
at

-

a

st
er
n-

l

t

-
an

e

e,
tic
y
t

change in any reasonable time scale. The multicanon
method@12,13# was invented to allow systems to transfor
at equilibrium between states that are separated by a
free energy barrier. This method has been generalized
applied to this hard-sphere crystal problem in two wa
which we describe next.

In both implementations the position of spherei is given
asr i5Ri1ui , whereRi is the ideal reference lattice positio
in the absence of fluctuations andui is the displacement o
spherei away from that reference position. The algorithm
both have Monte Carlo moves that change the reference
tice without changing the displacementsui, as well as more
standard moves that move individual spheres without cha
ing the reference lattice. We describe the shear impleme
tion first; this method we developed and used to obtain
first results @11#. However, Bruce, Wilding, and Ackland
@15# subsequently developed the simpler overlap implem
tation, which we find is computationally more efficient an
easier to program, so we used it for all of our more rec
simulations.

A. Shear implementation

In the shear implementation we used an equally spa
sequence of ideal reference lattices,Ri(l), labeled by an
index,l50,1,2, . . . ,h, that linearly interpolate between th
two stackings of interest, which are the beginning (l50)
and the end (l5h) of that sequence. Thus we have

hRi~l!5~h2l!Ri~0!1lRi~h!. ~2!

This produces al-dependent relative shear between ea
pair of adjacent layers whose local stacking pattern chan
The reference sites in the intermediate lattices (0,l,h) are
not all equally spaced, and generally some are too close
gether for the hard spheres to fit without touching. In t
original model, two spheres are assumed to touch if th
separation,ur i2r j u, is less thand, the diameter of a sphere
and this must remain true for the two stackings of intere
which are represented byl50 andh. For the intermediate
lattices, on the other hand, we allow the distance of cont
di j (l) to be either larger or smaller for each pair of near
spheres in adjacent layers whose relative reference posi
Ri2Rj , changes with changingl. We attempt, using feed
back, to choose thesedi j (l) so that the entropy is a mono
tonic function ofl and the average displacements,^ui& van-
ish for all i and l. Note that the pairwise interactions a
different for each interpolation pointl. This is different
from the original MCMC method@12,13#, where the Gibbs
distribution is multiplied by al-dependent~but otherwise
configuration-independent! reweighting factor, in order to
make the free energy monotonic between the two state
interest, thus eliminating the free energy barrier.

To start simulating one has to choose how many inter
lation points to use,h, and values for thedi j (l). There are
two types of moves. One is a single-sphere move, chang
one of the displacementsui . The other is al move that
increases or decreasesl by one without changing any of th
sphere displacements. Any attempted move of either typ
accepted if it does not result in any contact between sphe
The entropies and average displacements, as well as th
ceptance rates of the moves are measured. Based on
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resultsh is adjusted to attempt to maximize the rate of equ
bration between the two stackings of interest, and thedi j (l)
are adjusted to attempt to make the entropy monotonic
eliminate the average displacements. If this feedback is
cessful, we then measure the relative entropy of the
stackings.

We succeeded in getting this procedure to work for co
paring the fcc and hcp stackings for lattices of size up to3.
However, the difficulty of getting the feedback to conver
appeared to be increasing strongly with lattice size. Ty
cally, ‘‘bottlenecks’’ would form between the two stacking
of interest where thel-move acceptance rate was very sm
or zero, preventing equilibration, and the attempts at eli
nating these bottlenecks through the feedback were ti
consuming and not always succesful. However, we were
to obtain the entropy difference between the fcc and
stackings to within statistical errors of roughly 1024kB per
sphere@11#, as is summarized in Table I. Then we learned
the much more staightforward overlap implementation
MCMC for this problem reported by Bruce, Wilding, an
Ackland @15#, which we discuss next.

B. Overlap implementation

The overlap implementation of MCMC@15# uses only
two reference lattices, which are the two different stackin
the entropies of which we are comparing. Let us call th
two reference latticesa and b. Again there are standar
single-sphere moves and changes of the reference lattice
any reasonable sized lattice, the move that changes refer
lattices will be rejected due to sphere overlaps for all but
infinitesimal fraction of the sphere configurations. What
needed is to bias the simulation towards those rare sp
configurations that allow the stacking to be changed.

To do this, Bruce, Wilding, and Ackland@15# introduce
the overlap order parameter

M~$u%![M ~$u%,a!2M ~$u%,b!, ~3!

whereM ($u%,g) is the number of pairs of spheres that ove
lap in the configuration$u% for stackingg. For any allowed
configuration with stackingg,M ($u%,g)50, but for configu-
rations of the other stacking, usuallyM ($u%,g).0. To have
the change of stacking be an allowed move, we n
M($u%)50, so no overlaps are produced by the move t
changes the reference lattice.

The overlap multicanonical simulation samples the
assed, but unnormalized, distribution

P~$u%,gu$h%![P~$u%,g!eh„M~$u%!…, ~4!

whereP($u%,g) for ~unbiased! hard spheres is simply a con
stant for all allowed sphere configurations in stackingg, and
is zero otherwise. The weights$h% are chosen to eliminate
the free energy barrier separating the two stackings, t
allowing equilibration between them.

Let P(M) be the equilibrium, normalized, unbiasse
@h(M)50 for all M] probability distribution of the over-
lap, assuming the system does fully equilibrate between
two stackings. Then the probability of being in stackinga is
-
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Pa5
P~0!

2
1 (
M,0

P~M!, ~5!

and the entropy difference we are interested in is

Sa2Sb5kBlnS Pa

12Pa
D . ~6!

P(M) has a local minimum atM50 and local maxima at
positive and negativeM that represent the most probab
overlaps for the two different stackings. The weightsh(M)
are chosen to be nonzero only between these two lo
maxima of P(M). The unnormalized, biased probabilit
distribution forM is

P~Mu$h%!5P~M!eh~M!. ~7!

We choose the weights$h% so thatP(Mu$h%) is linear in
M between the maxima ofP(M). A simulation with a
given set of weights produces estimates ofP(M) and also a
new estimate of what the appropriate weights are to ach
this linearity. These new weights are then used for the n
longer simulation if the statistical errors have not yet be
reduced down to the desired level. This procedure straig
forwardly and effectively eliminates the free energy barr
between the two stackings and allows an accurate meas
ment of the entropy difference.

The overlap implementation of MCMC does not suff
from the tendency to form ‘‘bottlenecks’’ that slowed dow
the equilibration between the two stackings in our sh
implementation of MCMC. We used the overlap method
obtain most of the data reported in this paper. Where
compared the two implementations the measured entr
differences were, of course, the same.

C. Boundary conditions

Suppose one stacksN3 planes of two-dimensionally~hex-
agonally! close-packed spheres to form an arbitrary stacki
Each plane hasN13N2 spheresN1 in the i direction andN2
in the j direction.~We always chooseN15N2 to preserve the
hexagonal in-plane symmetry.! The i direction is chosen to
coincide the thex direction and thej direction is chosen a
60° counterclockwise from thex direction looking from
above. i and j are the two basis directions of the two
dimensional close packing. Each site has coordinate (i , j )
in-plane,i 50,1, . . . ,N121 and j 50,1, . . . ,N221.

Any stacking can be formed by fixing the position of th
( i , j ,k) reference site~in layer k) relative to thesamesite
( i , j ,k61) in the nearest layers. DefineSW k5RW ( i , j ,k11)
2RW ( i , j ,k), whereRW are the reference sites. We take our u
length to be the lattice spacing so thatuSW ku51. We use
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SW k55 SW 1[S 1

2
,

1

A12
,A2

3D , if from layerk to layerk11 is a forward permutation ofABC

SW 2[S 1

2
,2

1

A12
,A2

3D , if from layerk to layerk11 is a backward permutation ofABC.
~8!

TABLE II. This table summarizes the entropy differences per sphere between various pairs of stackings
at the densities we studied. The subscript ons is a sequence ofs i ’s that is repeated to get the stacking
sequence, so1 denotes fcc,2 denotes hcp, and the others are less simple stackings~see Sec. II!.

r/rcp N Ds 105Ds/kB

1 43 s12s2 5 2h12h8 91~5!

1 63 s12s2 5 2h12h8 107~4!

1 83 s12s2 5 2h12h8 119~3!

1 103 s12s2 5 2h12h8 113~4!

1 83 s11222s12 5 J22J8 6.1~1.5!
1 93 s12s122 5 4

3 h1
4
3 J1

4
3 J8 82.6~2.7!

1 83 s12s1122 5 h1J12J81h8 61.2~2.2!
1 83 s122s2 5 h22J1h8 44~4!

1 83 s111111222s11112112 5 1
2 J1

1
8 J81h8 8.2~2.2!

0.739 83 s12s2 5 2h12h8 90.2~4.3!
0.739 83 s11222s12 5 J22J8 13.7~2.9!
0.739 83 s122s2 5 h22J1h8 10.5~5.0!
0.739 83 s111111222s11112112 5 1

2 J1
1
8 J81h8 19~3!

0.739 83 s111112122s1112 5 1
2 J81

1
2 h8 6.2~3.2!

0.739 83 s111121122s11222112 5 1
2 h1

1
2 J82

1
4 h8 18.0~1.9!
p
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Taking SW k5SW 1 for all k gives an fcc stacking. For the hc
stackingSW k5SW 1 for k even andSW k5SW 2 for k odd ~or vice
versa!.

All simulations are done with periodicBC which is
implemented in the usual way:

sphere at site~ i , j ,k!5sphere at site~ i 1N1 , j ,k!

5sphere at site~ i , j 1N2 ,k!

5sphere at site~ i , j ,k1N3!,

so thatSW k5SW k1N3
. Our implementation of periodicBC al-

lows anyN3 that is a multiple of both of the periods of th
SW k patterns of the two stackings in a given simulation. F
example, the period for fcc is one layer, while that for hcp
two layers, soN3 can be any even number when we comp
fcc and hcp entropies.

IV. RESULTS

Our results for entropy differences between differe
stackings for both the close-packing limit (r/rcp51) and
near melting (r/rcp50.739) for different system sizes ar
summarized in Table II. A statistically significant finite-siz
effect was detected only for the smallest size 43. Based on
this, we assume that the finite-size effect is negligible
r

e

t

r

sizes 83 and larger, and we use those data for calculating
values of the entropic interactions using our Eq.~1!.

At close packing we fit, using the results ofN
583, 93, and 103 and the various different stackings, fir
letting all four parameters$h,J,J8,h8% vary, and then setting
h85J850 and only varying$h,J%. In the former case we
obtain h554.662.8,J56.161.6, J8520.361.1 and h8
53.462.7 in units of 1025kB with x2/@(df)53#51.5 and
for the h85J850 fits: h557.262.1 and J56.062.2 with
x2/@(df)55#51.9, where~df! means degrees of freedom o
the fit. We can see that the first fit withJ8 andh8 allowed to
vary gives values of them consistent with zero. Compar
the two fits we also see that the inclusion of these t
longer-range interactions in the fit does not significantly p
turb the values of the shorter-range interactionsh andJ. We
therefore conclude that our data can be explained using
model with only h and J nonzero. Indeed,J8and h8 not
being important is consistent with the small system sizeN
583 being close to the thermodynamic limit. The signs
the nonzero interactions all favor fcc stacking; therefore
has higher entropy than all other stackings, consistent w
experiment@2#. Notice thath@J@J8,h8 shows that the en-
tropic interactions decrease rapidly as their range increa

Similar fits of our data at a density (r/rcp50.739) near
melting yield h536.963.1, J518.263.0, J852.562.2,
and h858.862.8 with x2/@(df)52#50.2. Thus it appears
that the entropic interactions decrease in relative magnit
with distance much more slowly at this lower density th
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they do near close packing, which is perhaps expected, g
the larger free volume that allows the spheres to make la
excursions away from their ideal lattice positions. Again,
interactions are all of the sign that favor the fcc stacking. O
detection ofh8 is only at the three standard deviation lev
so has a small chance of being just a statistical fluctuatio
the data. However, if we fit assumingh85J850 the quality
of the fit declines strongly, givingh543.263.7 and J
517.363.8 with x2/@(d f)54#55.4.

For a general stacking pattern, the expansion as the
sity is reduced from close packing need not be isotropic.
the fcc stacking it must, by the cubic symmetry, but for t
other stackings, the expansion along the direction norma
the layers can be different from that along the directio
parallel to the layers. We have tested for this by allowing
ratio of these two expansions to vary in a simple simulat
of the hcp stacking at close packing, measuring the entr
vs the ratio, and fitting to find the ratio that maximizes t
entropy. We find that this optimal ratio is within60.002 of
isotropic, and the entropy difference between isotropic
pansion and the optimal expansion ratio is no more t
1025kB per sphere, so it is smaller than the statistical unc
tainties in our simulations. Because of this we have alw
assumed isotropic expansion in the the entropy comparis
we have made.

The issue of further-neighbor interactions arises
r/rcp,1. At close packing it suffices to test only for coll
sions between nearest-neighbor spheres because fu
neighbors cannot touch. Not testing for further-neighbor c
lisions speeds up the computer program. As the densit
reduced can we keep this approximation? For a model
do
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includes only nearest-neighbor interactions between sphe
the crystal is actually only metastable: once a sphere ‘
capes’’ from the cage of its nearest neighbors it wand
freely. We find that for densities at or above the melti
density, the rate of these ‘‘escapes’’ is very low, allowing
good measurement of the entropy of the~now metastable!
crystal. We have also measured the entropy differences
tween the model with only nearest-neighbor interactions
the otherwise identical model with nearest and next-near
neighbor interactions,sN2sNN , near melting~see Table III!.
Of course, adding the extra interactions does reduce the
tropy a little ~roughly 831025kB per sphere!, but this reduc-
tion is the same, within errors, for both fcc and hcp sta
ings. Thus we conclude that any systematic error in
entropy comparisons due to using only nearest-neighbor
teractions are smaller than the statistical errors. Theref
we have used the faster nearest-neighbor only model in m
of our simulations near the melting density.

TABLE III. The entropy differences per sphere between ha
sphere crystals with only nearest-neighbor interactions~N! and the
otherwise identical system with both nearest- and next-near
neighbor interactions~NN!. The systems with added interaction
have lower entropy, but the change is independent of the stac
pattern at the present statistical accuracy.

r/rcp N Ds 105Ds/kB

0.739 83 sN
fcc2sNN

fcc 8.3~1.9!
0.739 83 sN

hcp2sNN
hcp 7.8~1.9!
g,

re
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